This function imputes non-detect (censored) values in environmental laboratory analytical data using survival models with automatic distribution selection. It validates data quality requirements and fits multiple distributions to select the best model based on AIC. Each imputed value is guaranteed to be below its respective detection limit and above the specified minimum value.
Usage
impute_nondetect(
dt,
value_col = "value",
cens_col = "censored",
parameter_col = NULL,
unit_col = NULL,
dist = c("gaussian", "lognormal", "weibull", "exponential", "logistic", "loglogistic"),
min_observations = 25,
max_censored_pct = 75,
min_value = 0,
verbose = FALSE
)Arguments
- dt
A data.frame or data.table containing laboratory analytical data
- value_col
Character string specifying the column name containing values
- cens_col
Character string specifying the column name containing censoring indicators (0 = non-detect/censored, 1 = detected/observed)
- parameter_col
Character string specifying the column name containing parameter names (optional, for validation)
- unit_col
Character string specifying the column name containing units (optional, for validation)
- dist
Character vector of distributions to test. Options include: "gaussian", "lognormal", "weibull", "exponential", "logistic", "loglogistic"
- min_observations
Minimum number of observations required for modeling (default: 25)
- max_censored_pct
Maximum percentage of censored values allowed (default: 75)
- min_value
Minimum allowable value for imputed concentrations (default: 0, use 1e-10 for strictly positive)
- verbose
Logical indicating whether to display progress messages and distribution fitting information (default: FALSE)
Value
A data.table with additional columns:
- [value_col]_imputed
Imputed values for non-detect observations
- [value_col]_final
Final values combining original detected and imputed non-detect values
The returned object also has attributes containing model information:
- best_model
The fitted survival model object
- best_distribution
Name of the best-fitting distribution
- detection_limits
Vector of all detection limits found in the data
- max_detection_limit
The highest detection limit (for reference)
- parameter
Parameter name (if parameter_col provided)
- unit
Unit of measurement (if unit_col provided)
- aic
AIC value of the best model
- sample_size
Total number of observations
- censored_pct
Percentage of censored observations
Details
The function performs several validation checks: 1. Ensures sufficient sample size (>= min_observations) 2. Checks that censoring percentage is reasonable (<= max_censored_pct) 3. Validates that only one parameter and unit are present (if columns provided) 4. Tests multiple distributions and selects the best based on AIC 5. Generates random imputed values below each observation's detection limit and above min_value
For non-detect observations (censored = 0), the value in value_col is treated as the detection limit for that specific analysis, allowing for different detection limits across samples or analytical methods.
IMPORTANT: This function should be applied to data containing only ONE parameter at a time. Different environmental parameters have different distributions and should not be modeled together.
When verbose = FALSE, the function operates silently except for critical errors, making it suitable for batch processing of multiple parameters.
Examples
# Load example data
data(multi_censored_data)
# Basic imputation with default settings
set.seed(123)
result <- impute_nondetect(
dt = multi_censored_data,
value_col = "value",
cens_col = "censored",
verbose = FALSE
)
# View imputed values for non-detects
head(result[censored == 0, .(value, value_imputed, value_final)])
#> value value_imputed value_final
#> <num> <num> <num>
#> 1: 25 8.487192 8.487192
#> 2: 15 10.300671 10.300671
#> 3: 5 4.937120 4.937120
#> 4: 5 4.798058 4.798058
#> 5: 5 4.408386 4.408386
#> 6: 5 4.284067 4.284067
# Check best distribution selected
attr(result, "best_distribution")
#> [1] "lognormal"
# With parameter and unit validation
result <- impute_nondetect(
dt = multi_censored_data,
value_col = "value",
cens_col = "censored",
parameter_col = "parameter",
unit_col = "unit"
)
# For strictly positive values (avoiding exactly zero)
result <- impute_nondetect(
dt = multi_censored_data,
value_col = "value",
cens_col = "censored",
min_value = 1e-10,
verbose = FALSE
)
